Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Mariuska Reynoso-Paz,
Marilyn M. Olmstead,* Mark J. Kurth and Neil E. Schore

Department of Chemistry, University of California, Davis, CA 95616, USA

Correspondence e-mail:
olmstead@indigo.ucdavis.edu

Key indicators

Single-crystal X-ray study
$T=89 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.030$
ωR factor $=0.071$
Data-to-parameter ratio $=21.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

An enantiopure bicyclic pentasubstituted piperidine

A single addition product has been confirmed in the radical cyclization of a 1,6 -diene by a sulfonyl radical. The product, (3R,4S,5R,6R)-5-[(1R)-1-chloro(phenylmethyl)]-3-[(4-methyl-phenyl)sulfonyl]-4-phenyl-1-aza-8-oxabicyclo[4.3.0]nonan-9one, $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClNO}_{4} \mathrm{~S}$, results in a highly substituted piperidine.

Comment

Over the past several decades, radical cyclization reactions have been shown to be powerful tools for organic synthesis, enabling carbon-carbon bond formation to be effected in a highly controlled manner (Ellman \& Plunkett, 1995). The free-radical cyclization of 1,6 -dienes mediated by sulfonyl radicals has been reported by several groups (Kurth \& Rodriguez, 1987; Kurth \& Rodriguez, 1989; Kurth et al., 1990; Kurth \& Kantorowski, 1996). Reaction of diene (I) with p-toluenesulfonyl chloride and AIBN ($2,2^{\prime}$-azobisisobutyronitrile) in toluene at 373 K for 24 h gives rise to a single addition product in 30% yield. Based upon initial NMR data, it was not immediately obvious which of two possible structures, (II) or (III), could be assigned to this material, although mechanistically (II) appeared the more plausible, based on the expected preference of the sulfonyl radical to add to the less hindered alkene moiety. As a result, we carried out an X-ray crystal structure determination, which confirmed that (II) was indeed the sole product of the reaction.

(I)

(II) $\mathrm{Ar}=p$-Tol

Received 24 October 2001 Accepted 8 November 2001 Online 17 November 2001

Figure 1
The molecular structure of (II) showing the atom-labeling scheme. Displacement ellipsoids are shown at the 50% probability level.
ring is apparent in the drawing. The distance between the phenyl-ring centroid and the six-membered ring of the p-tolyl group is $3.165 \AA$, and the angle between their normals is $9.43(10)^{\circ}$. Crystal packing shows that there is a weak hydrogen bond between the primary hydrogen on C4 and the screw-axis-related oxazolidone atom O1.

Experimental

A solution of $(4 R)-N-[(E)$-3-phenyl-2-propenyl $]-4-[(E)-2$-phenyl-1-ethenyl]-2-oxazolidinone ($0.050 \mathrm{~g}, 0.164 \mathrm{mmol}$) in 3 ml toluene was permitted to react with p-toluenesulfonyl chloride $(0.031 \mathrm{~g}$, $0.163 \mathrm{mmol})$ and AIBN $(0.005 \mathrm{~g})$ at 373 K for 24 h . The solvent was removed and the residue chromatographed (7:3 EtOAc/hexane) to give 0.024 g (30% yield) of the bicyclic product as a colorless crystalline solid [m.p. 493 K (decomposition)].

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{ClNO}_{4} \mathrm{~S}$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=496.00$
Monoclinic, $P 2_{1}$
$a=9.5207$ (10) A
$b=9.1141$ (10) \AA
$c=14.1033$ (14) \AA
$\beta=101.957$ (8) ${ }^{\circ}$
$V=1197.2(2) \AA^{3}$
$Z=2$

Mo $K \alpha$ radiation
Cell parameters from 880
reflections
$\theta=2.2-31.2^{\circ}$
$\mu=0.28 \mathrm{~mm}^{-1}$
$T=89$ (2) K
Plate, colorless
$0.30 \times 0.24 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART 1000
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.920, T_{\text {max }}=0.983$
16388 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.071$
$S=0.97$
6690 reflections
308 parameters
H -atom parameters constrained

6690 independent reflections
5850 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-13 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-19 \rightarrow 19$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0384 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.004$
$\Delta \rho_{\text {max }}=0.28 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{\AA^{-3}}$
Absolute structure: Flack (1983)
Flack parameter $=-0.03(4)$

Table 1
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{i}}$	1.00	2.29	$3.2237(19)$	155
Symmetry code: (i) $1-x, y-\frac{1}{2}, 1-z$.				

Data collection: SMART (Bruker, 1999); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

This work was supported by grants from the National Science Foundation (CHE-97-10286 and CHE-00-78191). The Bruker SMART 1000 diffractometer was funded in part by the NSF Instrumentation grant CHE-9808259.

References

Beebe, X., Kurth, M. J. \& Schore, N. E. (1992). J. Am. Chem. Soc. 114, 1006110062.

Beebe, X., Schore, N. E. \& Kurth, M. J. (1995). J. Org. Chem. 60, 4196-4203.
Bruker (1999). SMART (Version 5.054) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Cahill, R. \& Crabb, T. A. (1973). Org. Magn. Reson. 5, 295-297.
Ellman, J. A. \& Plunkett, M. J. (1995). J. Org. Chem. 60, 6006-6007.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kurth, M. J. \& Rodriquez, M. J. (1987). J. Am. Chem. Soc. 109, 7577-7578.
Kurth, M. J. \& Rodriquez, M. J. (1989). Tetrahedron, 45, 6963-6968.
Kurth, M. J., Rodriguez, M. J. \& Olmstead, M. M. (1990). J. Org. Chem. 55, 283-288.
Kurth, M. J. \& Kantorowski, E. (1996). Mol. Diversity, 2, 207-216.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). SHELXTL. Version 5.1. Siemens Analytical X-ray
Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

